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Fig. 1: Force measurement in our macroscopic world and in molecular systems of biological
cells. a) Macroscopic device for analog force measurement consisting of a spring and a ruler.
b) A light switch is a binary force sensor that flips if sufficiently strong forces are applied for a
sufficiently long time. c) Adherent cells sense and control tensional forces ranging from about
10−12 N to about 10−9 N. d) Cellular membrane channels detect minute forces resulting from
poking, shear flow, or osmotic pressure on the membrane.

1 Introduction

Mechanotransduction – the cellular transduction of mechanical information into chemical sig-
nals – occurs on the level of specialized molecules. During the last decades, a large number
of mechanotransduction molecules have been discovered, leading to the general perception that
molecular mechanosensors exist in almost all types of cellular organisms, from bacteria to mam-
malian cells and plant cells. These molecular sensors can not only detect forces but also sense
mechanical properties of the environment, including viscosity, pressure, and elastic deformabil-
ity. For instance, most cells have means to detect tension in their outer membrane, which enables
them to maintain their mechanical integrity. Since the molecular underpinnings of biological
force sensing are slowly unraveling, there is an obvious need for theory to understand generic
mechanisms. This chapter will introduce paradigmatic molecular mechanosensors along with
established concepts for theoretical modeling. A few original contributions regarding sensitivity
and optimal detection of force changes are also presented.
Measuring minute quantities with molecular sensors may require systems that are quite differ-
ent from those employed for measurement in our macroscopic world. For instance, we usually
measure macroscopic mechanical forces by recording the extension of a spring as shown in
Fig. 1. This type of analog measurement is predicated on the availability of a gauged reference
scale. Alternatively, one may be more interested in knowing if the force exceeds a given thresh-
old. An example is a bistable light switch. In the nanoscopic world of biological molecules, the
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energy scales of the sensor and the signal are not far above the thermal energy scale kBT. Thus,
any system is subject to considerable fluctuations, which makes the two exemplary macroscopic
measurement approaches hard to realize. Noise affects the gauged reference scale of an analog
device as well as the definite state of a binary sensor. The question is then, which strategies are
employed by nature to sense and interpret stochastic signals robustly and quickly.

2 Mechanosensitive membrane channels
Mechanosensitive channels are a class of membrane channels that open or close upon mechan-
ical stimulation. When open, they allow passage of ions or solvent through the membrane, thus
transducing the mechanical stimulus into a chemical signal. Membrane channels for mechan-
otransduction are expressed in almost all cells, including prokaryotes and mammalian cells. In
fact, our perception of the world ultimately relies on these channels since they are responsible
for our sense of touch or pain and enable hearing. Mechanosensitive channels are also required
for maintaining tissue integrity, for blood pressure regulation, and osmoregulation [25]. Al-
though the first studies of mechanosensitive channels are more than 30 years old [14], the vari-
ous biophysical mechanisms of mechanotransduction by membrane channels have only become
a very active research field during the last decade [9, 29, 3].

2.1 Tension-sensing membrane channels
One of the best-studied mechanism for cellular mechanotransduction is “tension sensing”. The
salient feature of the tension sensing mechanism is that membrane channels react to increased
tension with shape changes and an ensuing pore opening, see Fig. 2a). Tension-sensing chan-
nels were largely studied with bacterial model organisms. Bacteria can grow in environments
with various concentrations of salts and sugars, leading to considerable variations in osmotic
pressure. It is thought that bacteria have evolved membrane channels that open if the ten-
sion in the membrane exceeds a critical level, thereby avoiding deformation and bursting of
their outer membrane under osmotic pressure. Channels that could fulfill this function are
the mechanosensitive channel with small conductance (MscS) and large conductance (MscL),
which open at a tension around 10 mN/m, approaching the lytic tension of bacterial membranes.
A popular physical mechanisms of tension-sensing relies on a radial expansion of the channel
molecule [29, 23]. If a channel opens, it changes the area that it occupies in the membrane.
Given a finite tension γ of the membrane, the free energy change associated with a positive area
change ∆A is ∆F = −γ∆A. Denote the state of the channel by x with x = 0 being the closed
state and x = 1 being the open state. Assigning internal energies of ε0 and ε1 to the closed
and open states, the overall energy is given by Fx(γ) = (1 − x)ε0 + xε1 − xγ∆A. Assuming
equilibrium, the probability of having an open channel is

p1(γ) =
e
−F1(γ)

kBT∑
x=0,1 e

−Fx(γ)
kBT

=
1

e
ε1−ε0−γ∆A

kBT + 1
. (1)

The resulting sigmoidal dependence of the open probability on membrane tension has been
measured for various channels. The corresponding data for MscL is shown in Fig. 2c). Such
measurements allow to estimate the energy difference between open and closed channel. Having
a radius on the order of R0 = 2 nm in the closed state, the channel area can change up to
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Fig. 2: a) Sketch of a tension-sensing membrane channel. b) Opening changes the area that
the channel occupies. c) Measured opening of MscL and fit to Eq. (1). Data points taken from
Ref. [30].

∆A = π(R1−R0) ∼ 20 nm2. Using a typical opening membrane tension of γ = 10 mN/m we
find ε1 − ε0 ∼ γ∆A = 2 × 10−19 Nm ' 48 kBT. This high energetic barrier prevents thermal
fluctuations from strongly affecting the opening state. Hence, tension-sensing channels with
large area change are molecular sensors that selectively respond to large stimuli that would be
critical for the integrity of the cell.

2.2 Channels sensing force through attached tethers

A second mechanism for mechanosensing is based on the idea that forces can be transmit-
ted directly to the channels via attached tethers (Fig. 3a). Tethered channels occur in various
biological systems, for instance in nociceptors (harm-sensing neurons) [12] and osmosensory
neurons [24]. Notably, it has also been hypothesized that tethered channels are necessary for
hearing [15]. On the molecular level, one of the best-studied mechanosensitive ion channels is
TRPN, a member of the Transient Receptor Potential channel family. It is responsible for touch
sensation and hearing in Drosophila [10, 35]. TRPN has a remarkably long N-terminal module
with 29 ankyrin repeats that tethers the channel to intracellular structures. Applying force to the
ankyrin tether opens the channel. Interestingly, it has been shown that the ankyrin tether from
TRPN can be fused to a voltage-gated potassium channel that is usually mechanoinsensitive,
and then renders this channel mechanosensitive [35]. This finding raises the question whether
sensing force at tethers could rely on simple micromechanical principles that are somewhat
independent of the detailed molecular channel structure.
The physical mechanisms involved in opening of tethered channels are a subject of current
research. Certainly, opening in response to force could be based on a rearrangement of the
molecule only, which may be thought of as “trap door mechanism”, see Fig. 3b). However, it is
likely that the energetics of the membrane-channel interaction also play a role for opening [27].
In particular, conical deformations of the channel shape affect the membrane bending energy.
To estimate the energetic effect of conical deformations, we consider the system depicted in
Fig. 3a), where a channel connected to a tether bears a force F on the order of 10 pN. Now
assume that the channel opening produces a tilt in the channel walls, changing its shape from
a cylinder to a cone by an angle ∆α. The tilted boundary induces a bending on the membrane,
which slightly changes the vertical position of the channel. For almost planar membranes, the
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Fig. 3: a) Sketch of a tethered membrane channel that opens when force is applied to the tether.
b) Opening can proceed through a purely internal deformation (a “trap door” mechanism), but
often changes the channel shape, leading to a radial or conical deformation.

height change is ∆h ≈ ∆αR0

[
Γe + log(R0

√
γ/κb/2)

]
, where Γe is the Euler-Mascheroni

constant and κb is the membrane bending modulus. A calculation of ∆h is presented in Ap-
pendix A. Since a vertical force is applied to the channel, the height change ∆h corresponds to
a change in free energy given by

∆F∆α ∼ −∆hF = −∆αFR0

[
Γe + log(R0

√
γ/κb/2)

]
. (2)

The conical deformation ∆α can become energetically favorable when a force F is applied
to the tether. The corresponding parameter values have been measured, e.g., for the chan-
nel TREK-1 [20] and are ∆α ∼ 0.38 rad and R0 ∼ 2.5 nm. With a bending modulus of
κb = 25 kBT and a typical membrane tension for eukaryotic cells of γ = 10−3 kBT/nm2 '
4.1× 10−3 mN/m we find |∆F∆α| ≈ 10 kBT. Thus, the gain in elastic energy through conical
deformation is quite large and actually exceeds the internal energetic barrier ∼ [4− 5] kBT that
resists deformation.

2.3 A topical issue: Piezo channels
A discussion of mechanosensitive membrane channels would not be complete without men-
tioning the molecules Piezo1 and Piezo2 [7]. During the last few years, it has become clear
that Piezo proteins play critical roles in various mechanotransduction processes, including the
sensing of mechanical harm (nociception), gentle touch [11], vascular functions, volume regu-
lation of red blood cells [5], and may even play a role for the mechanical perception of oneself
(proprioception) [32]. Mutations of the genes for Piezo in humans are also linked to hereditary
diseases, see for example Ref. [34]. The physical mechanism underlying mechanosensing via
Piezo channels in a physiological setting is a current subject of debate. They are more sensitive
to mechanical stimulation than the bacterial “security valve” MscL, since the energy difference
between closed and open state is only ∼ 9.7 kBT [8]. Experiments clearly demonstrate that
the channels can be opened by increasing membrane tension above around 5.1 mN/m. How-
ever, the molecules also sense cell poking and shear flow. Moreover, tethering of the membrane
to the cytoskeleton or to the extracellular matrix strongly affects the response of Piezo chan-
nels. An intriguing feature of Piezo channels is that they inactivate themselves on the timescale
of 100 ms after application of a constant force. This behavior may allow the channels to selec-
tively respond to changes in the applied forces but reduces their sensitivity in the high-frequency
regime [17].
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Fig. 4: a) Many eukaryotic cells possess dedicated adhesion structures that adapt their size and
composition to the mechanical load that they are exposed to. b) The molecule talin connects
transmembrane integrins with the intracellular actin cytoskeleton. c) If tensile forces between
5 pN and 25 pN are applied to talin, the molecule unfolds its rod domains one after the other
and thereby allows binding of an increasing number of vinculin molecules. d) sketch of a hypo-
thetical energy landscape separating the folded and unfolded state of a single fold in absence
of force. e) Measured folding and unfolding rates of the R3 domain of Talin. The straight lines
are fits with Eqns. (5a, 5b). Data points were taken from Ref. [33].

3 Stretch-sensing structural molecules

3.1 Talin responds to differential levels of stretch
Eukaryotic cells have means to detect and regulate mechanical stress in the intracellular cy-
toskeleton [13, 28, 6]. Key cytoskeletal proteins are filamentous actin, myosin motors that
produce contractile forces in the cytoskeleton, and molecules connecting the cytoskeleton to
trans-membrane integrin complexes, see Fig. 4a). One molecule that plays an essential role is
talin. In recent years, evidence has emerged that talin acts as a mechanosensor, responding to
applied physiological forces that are generated by the actomyosin complex to strengthen the
adhesion sites connecting the cell and the extracellular matrix.
Talin comprises of a head domain and 13 rod domains that are connected by an unstructured
linker chain, see Fig. 4b). The molecule is up to around 100 nm long when stretched and
various binding sites for actin, vinculin, and integrins are distributed along its length. Some of
the binding sites are cryptically buried inside the protein structure and usually not accessible
to the binding partners. When integrated into the cytoskeleton, talin constitutes a force-bearing
linkage between the extracellular matrix (ECM) and the actomyosin contractile machinery by
binding to integrins via the F3 domain in the N-terminal head and to actin via a number of actin-
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binding sites located along the talin rod [2]. In this arrangement, the domains R1 to R12 may all
experience tensile forces that can lead to conformational changes making further binding sites
accessible, see Fig. 4c). It has been shown that there are 11 crypic vinculin binding sites that
only become exposed under increasing tensile stress [33]. Thus, the binding affinity of talin to
other molecules is differentially regulated by force. Since talin has multiple binding sites that
open at increasing forces, its function is somewhat reminiscent of a classical force-measurement
device employing a spring and a ruler Fig. 1a).

3.2 Opening and closing of stretched molecular folds
To calculate how the unfolding of stretched molecules depends on the applied force, we consider
a linear molecule with only one folded site that can unfold in a reversible manner. Folding and
unfolding in the absence of forces can be pictured as a transition between two minima in the
free energy landscape determined by the molecular conformation, see Fig. 4d). The process
can be idealized as a diffusive motion of the system state along a one-dimensional reaction
coordinate. Calculation of the transition rates across an energetic barrier is the famous Kramers
problem [16]. For energy barriers that are much larger than the thermal energy scale, one finds
for the transition from one minimum (state j) to the other minimum (state i) that

kij ≈ c0e
−

(GTS−Gj)

kBT , (3)

where GTS is the maximum of free energy at the transition state. The exponential dependence
of a reaction rate on an energy divided by kBT is also known as Arrhenius law. To employ this
framework for folding and unfolding of a chain-like molecule, we make the highly simplified
assumption that the system behaves as an elastic spring with elastic constant d and rest length
L0 in the folded state. If the molecule unfolds, the rest length of the chain increases. The rest
length is L0 + δL1 in the transition state and L0 + δL1 + δL2 in the unfolded state. Hence,
we can assign the following energies to the folded state (0), the transition state (TS), and the
unfolded state (1)

G0 = µ0 +
d

2
(y − L0)2, (4a)

GTS = µTS +
d

2
(y − (L0 + δL1))2, (4b)

G1 = µ1 +
d

2
(y − (L0 + δL1 + δL2))2, (4c)

where y represents the extension of the molecule. Employing Eq. (3) and the state-dependent
force F = d(y − L0) or F = d(y − (L0 + δL1 + δL2)) we find

k10 = c0e
µ0−µTS−dδL

2
1/2+δL1 d(y−L0)

kBT = k̂10e
δL1
kBT

F
, (5a)

k01 = c0e
µ1−µTS−dδL

2
2/2−δL2 d(y−(L0+δL1+δL2))

kBT = k̂01e
− δL2

kBT
F
, (5b)

where k̂10 and k̂01 are constants. Thus, the transition rates from one state into the other depend
exponentially on the force F . The prefactors δL1,2/(kBT) in the exponent determine how dif-
ferently F affects forward and reverse rates and depend on molecular details. Note that the rates
naturally satisfy a local detailed balance constraint

k01

k10

= e
G1−G0
kBT , (6)
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and therefore are thermodynamically admissible. In reality, biological molecules rarely behave
like ideal elastic springs and unfolding is usually a complex process involving multiple transi-
tion states and pathways. Nevertheless, Eqns. (5a, 5b) are often a good approximation, as can be
seen for example by comparison with the folding rates of the R3 domain of talin, see Fig. 4e).
The measured data points for this comparison were taken from Ref. [33].

4 Force measurement with a two-state sensor

4.1 A generic model for a molecular force sensor
In this section, we discuss a simple model that epitomizes the theory of molecular sensors. We
idealize a force sensor, for instance a membrane channel, as a two-state system. The system
state is described by the binary variable x ∈ {0, 1}. The rate constant for a transition 0 → 1 is
denoted by k10 and the rate constant for 1 → 0 is denoted by k01. We assume Arrhenius-type
approximations for the rates

k10 = k̂10e
rF , k01 = k̂01e

−rF , (7)

where k̂10, k̂01, and r are constants. Thus, a positive force F increases the probability to be in
x = 1 by increasing the transition rate into this state and by also decreasing the transition rate
out of this state. To describe a sequence of transitions, we employ a two-state Markov process
also known as random telegraph process. P (x, t|x0, t0) is the probability to be in state x at time
t given a state x0 at time t0. The probabilities obey

1 = P (1, t|x0, t0) + P (0, t|x0, t0) (8)

and the Master equation reads

∂tP (1, t|x0, t0) = −k01P (1, t|x0, t0) + k10(1− P (1, t|x0, t0)). (9)

The steady state expectation values and variances are given by

〈x〉ss =
k10

k10 + k01

, (10)

σ2
ss = 〈x2〉ss − 〈x〉2ss = 〈x〉ss − 〈x〉2ss. (11)

A more detailed discussion of the two-state model is presented in Appendix B.

4.2 Precision of force measurement with a two-state sensor
In this subsection, we study how the two-state sensor can be used to measure the value of the
force F . The probabilities to be in either of the state are a unique function of F , as illustrated
for example in Fig. 2c). Thus, cells could in principle determine the magnitude of a constant
force by recording the statistics of the sensor state. If the sensor state x is monitored for a long
time T , the average is x̄ = 1

T

∫ T
0
x dt ≈ 〈x〉ss. Then, an estimate for F follows from inverting

〈x〉ss = 1/(1 + k̂01e
−2rF/k̂10), which gives

F ≈ log[k̂01x̄/(k̂10 − k̂10x̄)]/(2r). (12)
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The error of this estimate depends on the length of the measurement time T . Since F is constant,
all the error must come from the stochastic fluctuations in the sensor state, characterized by the
variance of x̄. This variance is to be calculated as σ̄2

ss ≡ 〈x̄x̄〉ss − 〈x̄〉2ss. Using the correlation
function (46) derived in the appendix together with Eq. (11) we find

σ̄2
ss =

1

T 2

∫ T

0

∫ T

0

〈x(t)x(t′)〉ss dtdt′ − 〈x̄〉2ss ≈
2

T (k01 + k10)
σ2
ss, (13)

where we assumed that the measurement time is much longer than the characteristic timescale
of the sensor T � 1/(k01 + k10). The meaning of Eq. (13) is that time averaging reduces the
variance in the measurement of x̄ to leading order by a factor of (k01 +k10)−1/T . Knowing the
variance of the estimated state x̄, we can now proceed to calculate the corresponding uncertainty
in force measurement δF . A Taylor expansion for small δF yields(

∂x̄

∂F

)2

(δF )2 = σ̄2
ss. (14)

When solving for (δF )2 and inserting Eq. (13), we find a remarkably simple result

(δF )2 =
1

2r2T

(
1

k̂10erF
+

1

k̂01e−rF

)
. (15)

The relation implies that the uncertainty is dominated by the smaller of the two rates. Good
measurements are only possible if the timescale of both state transitions is much shorter than
the measurement time T . Eq. (15) is almost identical to a well-known formula for the precision
of concentration sensing in biological systems, the so-called Berg-Purcell limit [4, 1, 31]. How-
ever, in the context of force sensing, Eq. (15) poses a rather stringent constraint on the range of
forces that can be measured since the rates kij depend exponentially on F . The signal-to-noise
ratio is F 2/(δF )2 ∼ F 2 k̂ijT r

2 exp (−r|F |). If the force-sensing module is, for example, a
molecular folding site that is similar to those in talin, we expect r ∼ 5 nm/kBT ∼ 1/pN. The
signal to noise ratio shows that extending the working range of such a force sensor over a range
of [0 − 10] pN requires taking extensive statistics with k̂ijT & 103. Note that this result only
holds if both rates are force-dependent. Having one force-independent rate may be somewhat
advantageous.
In summary, however, measuring the analog value of forces with a two-state sensor can be
challenging. Also, one may argue that biological cells often do not need to know the precise
magnitude of a mechanical stimulus. Rather, it is important to quickly detect forces, stresses, or
tensions if they exceed a certain threshold. The focus of the next section will be optimal on-line
detection of such events.

5 Sequential, threshold-based force sensing
One of the purposes of biological force sensing is to help conserve mechanical integrity of
cells and tissue. To be able to respond to external forces appropriately, cells must be able to
identify those situations where the mechanical load is too high. Typically, one can characterize
destructive amounts of mechanical load by a threshold. Then, the challenge for cells is to react
as quickly as possible if this threshold is surpassed. It is thus interesting to ask if there are
strategies that are optimal for the detection of such events.
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5.1 The CUSUM test for change detection

Consider a stochastic two-state sensor with a time-dependent state x that is affected by the
signal F . The sensor could be represented, for instance, by the model introduced in Sec. 4.1.
For simplicity, we assume that F changes during the observation time in a step-wise fashion
from a value F0 to a different value F1 as shown in Fig. 5a). We will now introduce a procedure
to detect this change quickly on the fly, without producing many false detections.
Denote the probability to observe a sequence of states [x1, . . . , xk] by Πk

i=1PF (xi). To quantify
the relative probability of having F = F1 versus F = F0, we consider the logarithm of the
probability ratios

Lk = log

(
Πk
i=1PF1(xi)

Πk
i=1PF0(xi)

)
=

k∑
i=1

log

(
PF1(xi)

PF0(xi)

)
=

k∑
i=1

∆Li. (16)

As long as F ∼ F0, the log likelihood decreases since the denominator is larger than the
numerator. After the change, when F ∼ F1, the log likelihood increases. Hence, we can
determine a change point by locating the minimum in L at which the function switches from
a decreasing trend to an increasing trend. However, to avoid detection errors, it is advisable to
wait a little bit after L has reached its minimum. By sampling L for a bit following a minimum,
we ensure that we are not detecting random fluctuations but instead pick up the real trend.
To constantly test if the log likelihood has a positive trend, we iteratively calculate a decision
function gk using the likelihood increments ∆Li = log

(
PF1

(xi)

PF0
(xi)

)
as

gk = gk−1 + ∆Lk if gk−1 + ∆Lk ≥ 0, (17a)
gk = 0 if gk−1 + ∆Lk < 0. (17b)

This procedure is continued until the decision function g exceeds a fixed value h. Then the
decision is made that F has changed from F0 to F1. If we assign a time tk to every measurement
xk, the time at which the decision is made can be formally expressed as

τd ≡ min(tk|gk > h). (18)

A graphical illustration of the procedure is given in Fig. 5a)-c). This method for detecting
changes was first suggested by E.S. Page [22] around 50 years ago. Since it is based on an
evaluation of a cumulative sum, it is commonly referred to as CUSUM test. It can be shown
that the CUSUM test is optimal in the following sense: if a detection threshold h is chosen
such that false detections occur with a mean period that is larger than a constant γ, then the
CUSUM test has the smallest worst mean delay for detection of a real change. The proof
of this optimality statement is quite technical and comes in different variants, for asymptotic
optimality when γ → ∞ [19], in a Bayesian framework [26], and for continuous times and
different stochastic dynamics determining ∆Lk [21]. Here, we will content ourselves with an
estimation of how quick the response of the CUSUM test is.
Assuming that the force change occurs at a time τc, the delay between τc and the decision
time τd ≥ τc is determined by the requirement of taking a random number of m samples. To
estimate m, we consider the sequence of log likelihood values just after the change occurred
∆L1,∆L2 . . .∆Lm. For simplicity, we assume that the ∆Li all have the same first moment
〈∆Li〉F1 = 〈∆L〉F1 where 〈. . .〉F1 denotes the expectation value with respect to the distribution
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Fig. 5: The classical CUSUM test discriminates between two values of a continuous signal.
a) It is assumed that the signal F jumps between two values F0 and F1. Measurements are
conducted at discrete times. b) The logarithmic likelihood of F1 versus F0 has a decreasing
trend for F ∼ F0 and has a increasing trend for F ∼ F1. c) The decision function gk records
increases in the log likelihood. If gk ≥ h, the decision is made that F1 is the new signal value.

determined by F1. We can write

〈
m∑
i=1

∆Li〉F1 = 〈
∞∑
i=1

Θ(m− i)∆Li〉F1 =
∞∑
i=1

〈Θ(m− i)∆Li〉F1

=
∞∑
i=1

〈∆Li〉F1〈Θ(m− i)〉F1 = 〈∆L〉F1〈m〉F1 ,

(19)

where we employed the unit step function Θ(y) = 0 for y < 0 and Θ(y) = 1 for y ≥ 0. At
the decision time τd, the procedure of the CUSUM test requires 〈

∑m
i=1 ∆Li〉F1 ≈ 〈gk〉F1 ≈ h.

It follows from Eq. (19) that the expected number of measurements producing a delay between
force change and sensor response is approximated by

〈m〉F1 ≈
h

〈∆L〉F1

=
h

〈log
(
PF1

(x)

PF0
(x)

)
〉F1

. (20)

The term in the denominator of Eq. (20) is called Kullback-Leibler divergence and is a measure
for how different the two distributions PF1 and PF0 are. The Kullback-Leibler divergence only
becomes zero if the two distributions are equal, leading to a divergent mean detection delay.

5.2 Can optimal sequential tests be realized with membrane channels?
To study a concrete example of how the CUSUM test can be important in biology, we con-
sider a force-sensing membrane channel that is described by the two-state model introduced



CellsD5.12 B. Sabass

1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000
Analytical approx. for delay

Average delay from CUSUM test with g
k

1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000
Average delay from concentration dynamics c(t)

Average delay from CUSUM test with g
k

a) b)

force F [0.1/r] force F [0.1/r]

delay at F=F = 41

no sensor response 
for F < F  /21

d
e
la

y
 t

im
e
 [

1
/k

  
 ]

0
1

d
e
la

y
 t

im
e
 [

1
/k

  
 ]

0
1

Fig. 6: Results for detection of a sudden force change from 0 to F > 0 at time τc. The param-
eters of the CUSUM test are F0 = 0, F1 = 4, and h = 100. We set r = 0.1, k01 = k10 = 1.
a) Simulation results for the waiting times from the proper CUSUM test, Eqns. (17a, 17b), com-
pare well with the analytical approximation given in Eq. (26). b) The approximate CUSUM test
realized with concentrations of signaling molecules c(t), Eqns. (24a, 24b), responds to force
changes with almost the same delay as the CUSUM test.

in Sec. 4.1. In our two-state model, the waiting times in both states are exponentially dis-
tributed. The probability to observe a sequence of states is thus given by PF ({τ1, τ2, . . .}) =
kije

−kijτ1dt1 kjie
−kjiτ2dτ2 . . . with ij ∈ {01, 10}, see Appendix B. The probability to observe

a waiting time τn during which the system remains in one state x ∈ {0, 1} can be conveniently
written as

PF (τn) = e−(xk01(F )+(1−x)k10(F ))τnk
j01
n

01 (F )k
j10
n

10 (F ) dτ. (21)

Here, the indicator functions j01
n and j10

n are only non-zero if the state changes at the end of τn.
If the system state changes as 0→ 1, we set j01

n = 1 and if the change is 0→ 1 we set j10
n = 1.

The increment of the logarithmic likelihood is thus given by

∆L(τn) = log

(
PF1(τn)

PF0(τn)

)
=(k01(F0)− k01(F1))x(t)τn + j01

n log

(
k01(F1)

k01(F0)

)
+

(k10(F0)− k10(F1))(1− x(t))τn + j10
n log

(
k10(F1)

k10(F0)

)
.

(22)

Next, we assume that the force is initially small and set F0 = 0. Using the expressions (7) for
the force-dependent transition rates yields

∆L(τn) = [k̂01(1− e−rF1) + k̂10(erF1 − 1)]x(t)τn − k̂10(erF1 − 1)τn + (j01
n − j10

n )rF1

∼ [k̂01(1− e−rF1) + k̂10(erF1 − 1)]x(t)τn − k̂10(erF1 − 1)τn.
(23)

In the second line we have neglected the terms ∼ ±rF1 since these represent short kicks of
alternating sign and therefore do not produce a continuous trend in the likelihood function.
If cells are to make use of the CUSUM test to detect a force F1 > 0, the detection proce-
dure must be implemented biochemically, which includes a repeated evaluation of Eq. (23). To
see how this occurs naturally in membrane channels, we consider the dynamics of signaling
molecules, e.g., calcium ions, that pass through the channel. We denote the intracellular con-
centration of the signaling molecule by c(t) and assume that the molecule is available in excess
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outside of the cell. We then have dc(t)
dt

= a x(t)− b(c(t)) where a is the rate at which molecules
can pass through the open channel and b(c(t)) denotes the rate at which the signaling molecules
are removed. Typically, the molecules are being pumped actively out of the cytosol. In the case
of calcium ions, an established expression for the rate of pumping is b(c) = b̂1c

2/(b̂2 + c2) with
two constants b̂1,2 [18]. Assuming that the ion pumps operate always at maximum speed, we
take b̂2 � c2 and b(c) ≈ b̂1. Then, the concentration changes in each time step ∆t as

c(t+ ∆t) ≈ c(t) + ax(t)∆t− b̂1∆t if c(t) + ax(t)∆t− b̂1∆t ≥ 0, (24a)

c(t+ ∆t) = 0 if c(t) + ax(t)∆t− b̂1∆t < 0. (24b)

The concentration increment in Eq. (24a) has the same form as the likelihood increment given
in Eq. (23), except that the waiting times τn are replaced by infinitesimal time steps ∆t. The
concentration c(t) also obeys the same dynamics as the decision function gk for the CUSUM
test, Eqns. (17a,17b). Therefore, we suggest that c(t) can act as a continuous approximation for
gk to decide whether the force has exceeded a prescribed threshold. The reaction parameters a
and b̂1 determine the force F1 > 0 and comparison with Eq. (23) yields

a/b̂1 = [k̂01(1− e−rF1) + k̂10(erF1 − 1)]/[k̂10(erF1 − 1)]. (25)

The threshold in c(t) leading to a detection of a force can be realized, for example, by a chemical
reaction that depends non-linearly on c(t) to produce a step-like response if c(t) ≥ h̃.
To estimate the delay until detection we consider the waiting time probability of consecutive
closed and open states PF (τ0, τ1) = k10(F )e−k10(F )τ0 dτ0 k01(F )e−k01(F )τ1 dτ1. Using the same
reasoning as for Eq. (20), we obtain the average number of consecutive pairs of state changes
at force F as

〈moc〉F ≈
h∫ ∫∞

0
log
(
PF1

(τ0,τ1)

PF0
(τ0,τ1)

)
PF (τ0, τ1) dτ0dτ1

=
h

2[cosh (rF )− cosh (rF1 − rF )]
. (26)

With the average number of state-change pairs given, an approximate delay time results as
〈(τ0 + τ1)〉F 〈moc〉F = (1/k10(F ) + 1/k01(F )) 〈moc〉F .
In Fig. 6a), results from a simulation of the CUSUM test for detection of a suddenly applied
force F are presented. The likelihood is calculated with the constant parameter F1 = 4×0.1/r,
while the true magnitude of the force F is varied. It can be seen the sensor only responds for
F > F1/2. Moreover, the sensor responds to forces that are above the threshold F > F1 on
average faster than for F = F1. The analytical approximation for the delay time agrees well
with the simulation results. Figure 6b) shows a comparison of the proper CUSUM test based
on evaluation of gk, Eqns. (17a, 17b), with the approximate biological realization based on the
concentration of signaling molecules c(t), Eqns. (24a, 24b). Clearly, the performance of the
biological realization is very similar to the performance of the full CUSUM test. Therefore, we
can surmise that biology employs a signal integration strategy like the CUSUM test if optimal
detection of forces is required.
Finally, we mention that membrane-channel systems combined with a threshold-like response
to a critical concentration of signaling molecules is a common motive in cell biology. Examples
include depolarization of nerve cells and local intracellular calcium responses. It is tempting
to conclude that signal integration principles akin to those idealized by the CUSUM test are a
generic feature of such systems.
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Appendices

A Mechanical interaction of a channel with the surrounding
membrane

A.1 Calculation of the membrane deformation

We assume that the membrane-channel system is in mechanical equilibrium and consider an
almost planar lipid membrane. The height h of the membrane above a reference plane is to be
a unique function of a two-dimensional position vector r lying in the reference plane. For the
position vector, we employ a cylindrical coordinate system with radius r and angular coordinate
ϕ, see Fig. 3. The nabla operator ∇ operates in the two-dimensional reference plane and,
since we assume small gradients, the functional determinant is approximated as

√
1 + (∇h)2 ≈

[1 + 1
2
(∇h)2]. Within this framework, a fluid membrane can be described with the following

energy

Hh =

∫
κb

2
(∇2h)2 + γ[1 +

1

2
(∇h)2]d2r, (27)

where the surface integration extends over the entire membrane. Here, κb is the bending con-
stant of the membrane and γ is the membrane tension. The first term in Eq. (27) is an energy
penalty resulting from non-zero mean curvature while the second term penalizes changes of the
area. A variation of the energy yields

δHh =

∫
κb(∇2h)(δ∇2h) + γ(∇h)(δ∇h)d2r =

∫
∇2(κb∇2h− γh)δh d2r

+

∫
[κb∇2h(δ∇h)−∇(κb∇2h− γh)(δh)] sds,

(28)

where we employed partial integration and the divergence theorem with s denoting a normal
vector pointing outwards from the membrane area on the contour path s. Since Hh is minimal
in mechanical equilibrium, the equation determining h follows from the first line of Eq. (28) as

∇2(∇2 − ξ2)h = 0, (29)

with ξ2 ≡ γ/κb. We next assume that the membrane forms a radially symmetric annulus around
a circular channel protein with radius R. The membrane extends far out to a radius L� R. At
the outer contour of the membrane, we fix the membrane height and slope as

h(L) = 0, (30a)
∂rh(r)|r=L = 0. (30b)

For the inner contour surrounding the channel we assume the boundary conditions sketched in
Fig. 3a) with a height h(R) and a contact angle α given by

h(R) = h(0), (31a)
∂rh(r)|r=R = α. (31b)
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If a constant vertical force F is applied via the tether at r = 0, we need to employ a free energy
that takes the constant force acting on the membrane contour into account

F = Hh −
∫ 2π

0

Fh(R)

2πR
Rdϕ. (32)

The variation δF yields the expression (28) minus 1/(2π)
∫ 2π

0
Fδh(R) dϕ. When calculating

δF , the first term in the second line of Eq. (28) is irrelevant since the contact angle at the channel
is fixed by Eq. (31b). A vanishing δF in mechanical equilibrium requires

F =− κ2π∂r
(
ξ2h−∇2h

)
r|r=R, (33)

as well as equation (29) for the interior of the membrane. These equations determine h com-
pletely. The solution fulfilling the above differential equations and boundary conditions is

h =
F log(L/r)

2γπ
− (F + 2Rαγπ)K0(rξ)

2RγπξK1(Rξ)
, (34)

where Kn are the Bessel K functions of n-th order and we have dropped all terms that decay
exponentially with ξL � 1. Usually, the membrane tension is weak enough to guarantee that
the lengthscale ξ−1 set by the tension and bending constant is much larger than the nanometer-
scale that is characteristic for membrane channels. Hence, we assume ξr � 1 and ξR � 1 to
obtain

h ≈ F

2γπ
log(L/r) +

(F + 2αγπR)

2γπ
[Γe + log (Rξ/2)] , (35)

where Γe is the Euler-Mascheroni constant. If F is held constant and α changes, the resulting
height change is ∆h = ∆αR [Γe + log(Rξ/2)], which is the expression used in the main text.

A.2 Free energy of the membrane around a tethered channel
For a full analysis of how the force F changes the free energy of the membrane-channel system,
we need to calculate the expression in (32) explicitly. On employing the the identity (∇h)2 =
∇ · (h∇h)− h∇2h along with Eq. (29), the deformation energy becomes

Hh = −γ
2

∫
h∂rh rdϕb|r=R +

γ

2

∫
h∂rh rdϕb|r=L −

γ

2

∫
hH∇2hSd2r, (36)

where hH and hS are the parts of h that fulfill ∇2hH = 0 and (∇2 + ξ2)hS = 0. Again, we
ignore terms that decay exponentially with ξL� 1 and obtain up to an L-dependent constant

Hh = −γπR2 − F 2K0(Rξ)

4RγπξK1(Rξ)
+
F 2 log(L/R)

4γπ
+

(2Rγπα)2K0(Rξ)

4RγπξK1(Rξ)
. (37)

The work related to application of force F is given by

Fh(0) = Fh(R) =
F 2 log(L/R)

2γπ
− (F 2 + 2RγπαF )K0(Rξ)

2RγπξK1(Rξ)
. (38)

Adding the last two equations, we obtain for the overall free energy

F = −γπR2 +
(F + 2πκbξ

2Rα)2

4πκbξ2

K0(Rξ)

RξK1(Rξ)
− F 2 log(L/R)

4πγ
. (39)

We can again expand this result for ξR� 1 to obtain

F ≈ −γπR2 − αRF [Γe + log (Rξ/2)]− F 2

4πγ
[Γe + log (Lξ/2)] . (40)
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B Review of the stochastic two-state process
We consider a binary state variable x ∈ {0, 1} and denote by P (x, t|x0, t0) the probability to be
in state x at time t given a state x0 at time t0. The probabilities obey

1 = P (1, t|x0, t0) + P (0, t|x0, t0) (41)

and the probabilities evolve according to

∂tP (1, t|x0, t0) = −k01P (1, t|x0, t0) + k10(1− P (1, t|x0, t0)). (42)

The solution is for P (x, t|x0, t0) is

P (x, t|x0, t0) =
k10δx,1 + k01δx,0

k10 + k01

+ (δx,1 − δx,0)
e−(k10+k01)(t−t0)

k10 + k01

(k01δx0,1 − k10δx0,0), (43)

The steady-state expectation values are thus given by

〈x〉ss = lim
t→∞

∑
x=1,0

xP (x, t|x0, 0) =
k10

k10 + k01

, (44)

σ2
x = 〈x2〉ss − 〈x〉2ss = 〈x〉ss − 〈x〉2ss. (45)

The two-time correlations for t ≥ t′ in steady state are given by

〈x(t)x(t′)〉ss = lim
t′′→−∞

∑
x,x′,x′′=1,0

xP (x, t|x′, t′)x′P (x′, t′|x′′, t′′) = P (1, t|1, t′)〈x〉ss

=
k2

10 + k10k01e
−(k10+k01)(t−t′)

(k10 + k01)2
= 〈x〉2ss +

k10k01e
−(k10+k01)(t−t′)

(k10 + k01)2
.

(46)

Next, we aim to calculate the likelihood of a given sequence of states and start by considering a
single state change. Assuming that the state is initially given by j ∈ {0, 1} with x = j at t = t0,
we are looking for the survival probability G(τ |j, t0) that quantifies how likely it is that the
system remains in the same state for a time τ . The evolution equation for the two-state process
dictates that G(τ |j, t0) obeys

∂τG(τ |j, t0) = −kijG(τ |j, t0). (47)

Note that this equation also holds if the rates are time-dependent. Assuming constant rates,
the differential equation yields G(τ |j, t0) = e−kijτ . We are now interested in the probability
p(τ |j, t0) dτ that the state survives until τ and then changes in the infinitesimal time interval
[t + τ, t + τ + dτ). Using the expression Eq. (47) for the rate of occurrence of the change, we
have

p(τ |j, t0) dτ = −∂τG(τ |j, t0) dτ = kije
−kijτ dτ. (48)

Next, let us consider a given sequence of changes with waiting times {τ1, τ2, τ3 . . .} starting at
x = j. Using the probability density p(τ |j, t0) derived above, the probability of finding this
given sequence is

P ({τ1, τ2, τ3 . . .}) = kije
−kijτ1dτ1 kjie

−kjiτ2dτ2 kije
−kijτ3dτ3 . . . (49)



Force Sensing CellsD5.17

References
[1] G. Aquino, N. S. Wingreen, and R. G. Endres. Know the single-receptor sensing limit?

think again. J. Stat. Phys., 162(5):1353, 2016.

[2] K. Austen, P. Ringer, A. Mehlich, A. Chrostek-Grashoff, C. Kluger, C. Klingner,
B. Sabass, R. Zent, M. Rief, and C. Grashoff. Extracellular rigidity sensing by talin
isoform-specific mechanical linkages. Nat. Cell Biol., 17(12):1597, 2015.

[3] N. Bavi, Y. A. Nikolaev, O. Bavi, P. Ridone, A. D. Martinac, Y. Nakayama, C. D. Cox, and
B. Martinac. Principles of mechanosensing at the membrane interface. In The Biophysics
of Cell Membranes, page 85. Springer, 2017.

[4] H. C. Berg and E. M. Purcell. Physics of chemoreception. Biophys. J., 20(2):193, 1977.

[5] S. M. Cahalan, V. Lukacs, S. S. Ranade, S. Chien, M. Bandell, and A. Patapoutian. Piezo1
links mechanical forces to red blood cell volume. Elife, 4:e07370, 2015.

[6] B. Chen, B. Ji, and H. Gao. Modeling active mechanosensing in cell–matrix interactions.
Annu. Rev. Biophys., 44:1, 2015.

[7] B. Coste, J. Mathur, M. Schmidt, T. J. Earley, S. Ranade, M. J. Petrus, A. E. Dubin,
and A. Patapoutian. Piezo1 and piezo2 are essential components of distinct mechanically
activated cation channels. Science, 330(6000):55, 2010.

[8] C. D. Cox, C. Bae, L. Ziegler, S. Hartley, V. Nikolova-Krstevski, P. R. Rohde, C.-A. Ng,
F. Sachs, P. A. Gottlieb, and B. Martinac. Removal of the mechanoprotective influence
of the cytoskeleton reveals piezo1 is gated by bilayer tension. Nat. Commun., 7(10366),
2016.

[9] N. Dan and S. A. Safran. Effect of lipid characteristics on the structure of transmembrane
proteins. Biophys. J., 75(3):1410, 1998.

[10] T. Effertz, B. Nadrowski, D. Piepenbrock, J. T. Albert, and M. C. Göpfert. Direct gating
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